Realms Beyond 54

Game End

Congratulations to Miguelito of the Byzantine Empire
Image of winning player. In the year 1765 AD, Miguelito led the Byzantine Empire people to a domination victory, and will be forever remembered as the greatest ruler in all of human history!

game status

game description

                === Server url ===
pb.zulan.net:2054
No password


== Mod  ==
You need the mod 'CloseToHome_v1.4.4' for joining in this game.
Current used version: CloseToHome_v1.4.4(incl. Update 3, 23. October 2020)


Unzip the file into the mods folder of Civ4:BTS (not into 'My Games\Beyond the Sword'!!!)
and edit the shortcut for the game start to
"[…]\Beyond the Sword\BTS_Wrapper.exe" mod= "CloseToHome_v1.4.4" or
"[…]\Beyond the Sword\Civ4BeyondSword2015.exe" mod="CloseToHome_v1.4.4"


== Tools ==
Civ4BeyondSword2015.exe (Required for non-blocking of players)
BTS_Wrapper (Required for faster login)

player summary

IdNameLeaderNationScoreStatus
7 MiguelitoJustinian IByzantine Empire1offline
2 Mr. CairoRagnarEnglish Empire1offline
6 SuperdeathDarius IHoly Roman Empire1offline
4 MjmdVictoriaIndian Empire1offline
8 Ruff.HannibalJapanese Empire1offline
9 El GrilloCharlemagneKhmer Empire1offline
* 0 scooterGandhiKorean Empire1offline
5 ElkadWashingtonMaya Empire1offline
10 VanroberCyrusMongolian Empire1offline
* 3 GiraPericlesRussian Empire1offline
1 naufragarAugustus CaesarSpanish Empire1offline

game log

Change game log filter

Save current filter

Saved filters

    Actual timezone: Europe/Berlin

    Server time: 12:15 a.m.

    TimeTurnPlayerEvent
    05/18/2021263-a new turn has begun. It is now 1765 AD
    05/18/2021263-the following players did not finished their turn:
    • (id=1)
    • (id=2)
    • (id=4)
    • (id=5)
    • (id=6)
    • (id=7)
    • (id=8)
    • (id=9)
    • (id=10)
    05/17/2021262-a new turn has begun. It is now 1760 AD
    05/17/2021262-the following players did not finished their turn:
    • (id=1)
    • (id=2)
    • (id=4)
    • (id=5)
    • (id=6)
    • (id=7)
    • (id=8)
    • (id=9)
    • (id=10)